以下是:重慶市梁平區浪涌-放心可靠的產品參數
浪涌保護器 1 低壓 1 范圍 浪涌-放心可靠供應范圍覆蓋重慶市、萬州區、涪陵區、渝中區、大渡口區、江北區、沙坪壩區、九龍坡區、南岸區、北碚區、綦江區、大足區、渝北區、巴南區、黔江區、長壽區、江津區、合川區、永川區、南川區、潼南區、銅梁區、榮昌區、璧山區、梁平區、城口縣、豐都縣、墊江縣、武隆縣、忠縣、開縣、云陽縣、奉節縣、巫山縣、巫溪縣等區域。 【盾開】為您提供北碚電涌保護器、信號隔離器工藝層層把關、九龍坡電涌保護器、信號隔離器多行業適用、巴南電涌保護器、信號隔離器快捷的物流配送、巫山電涌保護器、信號隔離器有實力有經驗、云陽電涌保護器、信號隔離器價格低等多元產品與服務。在重慶市梁平區采買浪涌-放心可靠到盾開電氣(重慶市梁平區分公司)dokin0000991-3,無論您是個人用戶還是企業采購,我們都將竭誠為您服務。品質保證,價格優惠,廠家直銷,歡迎有需要的客戶來電。供應服務范圍覆蓋重慶市、萬州區、涪陵區、渝中區、大渡口區、江北區、沙坪壩區、九龍坡區、南岸區、北碚區、綦江區、大足區、渝北區、巴南區、黔江區、長壽區、江津區、合川區、永川區、南川區、潼南區、銅梁區、榮昌區、璧山區、梁平區、城口縣、豐都縣、墊江縣、武隆縣、忠縣、開縣、云陽縣、奉節縣、巫山縣、巫溪縣,聯系人:鄭科-【13336912721】。 重慶市,梁平區 2022年,全年實現地區生產總值5771578萬元。巴渝大平壩——梁平壩子,沃野千里、碧田萬頃。四面青山下,蜀東魚米鄉;千家竹葉翠,百里柚花香。屬亞熱帶季風性濕潤氣候,冬暖春早、秋短夏長、初夏多雨、無霜期長。
不容錯過的浪涌-放心可靠視頻展示!產品特點一目了然,為您的購買決策提供堅實依據。以下是:重慶梁平浪涌-放心可靠的圖文介紹多年行業經驗專注 電涌保護器,信號隔離器行業,只為您提供放心的產品。貨源穩定、庫存充足、滿足客戶量大的需求。工藝嚴選、廠家成熟、材質直供。
中國雷電災害的現狀
雷電災害是一種不可抗拒的自然性災害,危害著人類的人身和財產。安迅電源防雷器主要通過地區分析、行業分析、時間分析、人身雷電災害四個方面來講解中國雷電災害的現狀。1998-2001年全國直接經濟損失超過100萬元的雷電災害每年都在10次以上.其損失每年都大于5000萬元。全國同期平均每年雷擊死亡379人.受傷310人。
一、雷電災害地區分析
全國重大雷電災害在空間上呈現明顯的區域性分布特點.1998-2001年這四年間.全國56次重大雷電災害的46.4%(約一半)發生在5個省,其中山東7次、廣東6次、江西5次、河南4次、浙江4次,這5省重大雷電災害的直接經濟損失為8337萬元,占全國的57.9%;其余的發生在貴州等17個地區,另外,新疆等9個省區沒有重大雷電災害的記錄。圖6.1給出了1998-2001年中國重大雷電災害空間分布(各省用省會城市來表示).全國重大雷電災害主要分布在東南地區和華北地區.形成一南一北的兩個明顯的雷災中心區。雷災在南方集中在浙江——江西——廣東,呈帶狀分布。在北方集中在山東和河南,呈圓形分布。這兩個雷災中心區在地形上具有很好的代表性,北區以平原為主。南區以山地為主。在直接經濟損失方面,北區的損失強度為235萬元/次,比北區更嚴重的南區為383萬元/次,其原因主要是南區發生了3次損失都在1000萬元以上的重大
雷電災害.其中1998年2月和6月江西兩次棉麻儲備庫遭雷擊引發火災分別造成1800萬元和1200萬元的損失,2001年5月廣東某廠房遇雷擊并引發爆炸造成1000萬元的損失并有人員傷亡。這3次雷電災害都與倉儲行業有關,和下面所做的雷災行業分析的結果是吻合的.從整體來看,全國重大雷電災害在東部比西部更嚴重,其原因主要是社會狀況尤其是經濟水平存在差異,經濟相對發達的東部地區發生重大雷電災害的可能性較大。西南地區的雷電災害也比較嚴重,成為僅次于兩大雷災中心區的第三雷災區。整個廣大的西北地區是全國雷電災害輕的地區。
![]()
圖6.1 1998-2001年中國重大雷電災害空間分布圖(單位:次)
二、雷電災害行業分析
1998-2001年全國重大雷電災害56次分布在采礦、倉儲、電力、紡織、旅游、農業、石化、通、冶金、醫藥等10個行業.其中雷災嚴重的三大行業是通、電力和倉儲,雷災次數(指重大雷電災害次數,下同)分別為15次、14次和9次,占全部的67. 9%。這三大行業的直接經濟損失為10757.8萬元,占全部的74.7%。圖6.2給出了1998-2001年中國重大雷電災害行業分布,實線代表雷災直接經濟扭失,虛線代表雷災次數,行業損失和雷災次數的相關系數為0.6965,存在一定的相關性。通和倉儲行業具有代表性,通行業的重大雷電災害發生頻繁,而倉儲行業的經濟損失嚴重。通行業自身的特點以及伴隨電子化的發展是導致雷電災害日益頻繁的根本原因,特別是雷電電磁脈沖(LEMP)的危害變得越來越嚴重,這也是雷電災害的發展趨勢之一。通行業的雷電災害往往有一個明顯的特點,就是其經濟損失不僅存在嚴重的直接經濟損失,而且伴有更嚴重的間接經濟損失如服務中斷和數據丟失等。而倉儲行業的重大雷電災害的發生有兩個顯著的特點:一是雷災損失強度很大,即單次雷電災害造成的經濟損失很高,全國9次重大雷電災害的直接經濟損失高達5470萬元,平均607. 8萬元/次;二是雷災的后續危害很嚴重,容易發生雷擊火災和雷擊爆炸等,尤其是當雷電襲擊存放棉麻、火藥、糧食等易燃易爆物品的倉庫或廠房時.對重大雷電災害單次直接經濟損失按行業進行比較,高的是倉儲行業.其次為農業、采礦和石化行業,居中的是電力、醫藥和冶金行業,而通、紡織和旅游行業低。
![]()
圖6.2 1998 -2001年中國重大雷電災害行業分布圖
(實線代表雷災直接經濟損失,單位:萬元.坐標左軸;虛線代表雷災
次數,單位:次,坐標右抽)三、雷電災害時間分析
全國1998-2001年56次重大雷電災害分布在各年分別為21次、17次、8次和10次,其中52次發生在4-8月的時間段內,占全部的92.9%. 4-8月的重大雷電災害在很大程度上可以代表全年的同類災害,這一點在下面的雷電災害預測中將會得到應用。全部56次雷災按月統計。8月多為18次,其次7月為14次,1、3、11、12月為0次。圖6.3給出了1-12月的重大雷電災害次數的季節指數,顯著表明雷災集中發生在4-8月,尤其是7月和8月。雷電災害次數和直接經濟損失之間的相關系數r為0.9284,具有良好
的相關性,因此,下面的雷電災害分析與預測將以雷災次數為主,其直接經濟損失可以用雷災次數乘以單次雷災損失而得到.按月的距平百分率分析結果表明,重大雷電災害每月平均發生1.167次。1998年的7月與8月和1999年的7月與8月是主要的正偏移月份,而每年的1,2,3月和9,10,11,12月幾乎沒有重大雷電災害的發生,為主要的負偏移月份。雷災的發生呈現周期性,集中在每年的4-8月,并且有逐漸遞減的趨勢,重大雷電災害次數1998-2001年的48個月中平均每月遞減0.027次.但由于年度數據太少,并不能得出確切的雷災年際周期及年際趨勢。
![]()
圖6.3重大雷電災害次數的季節指數
四、人身雷電災害
雷電災害的危害不僅體現在經濟損失方面,也多造成人身傷亡。1998-2001年雷擊死亡人數每年分別為421,227,451和417人,四年共死亡1516人,平均每年379人;同期雷擊受傷分別為192,194,372和483人,四年共受傷1241人.平均每年310人.其中嚴重的1998年8月發生在湖北的庫雷災,一次性造成197人死傷。造成人身傷亡的雷擊多發生在海邊、河邊、樹下、農村田間和山坡等易受雷擊的地方。全國雷電典型災害造成人身傷亡多的是廣東省,其次為廣西、貴州、福建、云南等4省區,這5個省區每年的雷擊人身傷亡人數占全國的60%左右,其中廣東約占全國的1/4。這類災害主要發生在廣大的農村,具有很大的不確定性.很難得到根本的防治.有效的防治方法就是加強雷電災害的宜傳和教育,提高人們的防雷意識,讓人們主動避開易受雷擊的時候和遠離易受雷擊的地方。
對于雷電災害,開展災害預測是必要的,可以對未來雷電災害的風險評估提供重要的指導.鐘萬強等人對中國的雷電災害做過初步的預測,雷電災害的預測主要根據雷災與時間的關系,分別采用時間序列平滑法和季節變動預測法,預測結果表明,在2002-2005年期間全國將分別發生重大雷電災害14,12,11,11次,四年合計47次,平均每年12次,每年將造成直接經濟損失約3000萬元,平均每年人身傷亡580人左右。
本廠主營 電涌保護器,信號隔離器。重慶梁平溫州盾開電氣有限公司秉承“保證質量誠信經營、服務優質、合作共贏”的經營理念在未來的歲月里,我們將- -如既往地和新老客戶真作,雙贏互惠,共同創造-個更加輝煌的明天!產品圖片均為實物照片和設計圖,但由于拍攝技術、光線、顯示器參數等因素影響。如果您在收貨、使用時遇到問題、請聯系我們,我們可以隨時提供專業的指導、如果收到貨發現問題請聯系我們。
1.內部防雷裝置(internal lightning protection system):除外部防雷裝置外,所有其他附加設施均為內部防雷裝置,主要用于減小和防護雷電流在需防護空間內所產生的電磁效應。2.避雷器(surge arrester):通過分流沖擊電流來限制出現在設備上的沖擊電壓、且能返回到初始性能的保護裝置,該裝置的功能具有可重復性。3.內部引下線(internal down-conductor):位于被防雷保護的建筑物內部的引下線.4.保護器(protector):防止設備或人身受到高壓或強電流危害的裝置.5.保護導體(protective conductor):提供目的(如防觸電)的導體。6.保護電路(protective circuit):以保護為目的的一種輔助電路或部分控制電路。7.保護模式(mode of protection): SPD的保護器件可能按接在相線與相線、PE線與PE線、相線與中性線、中性線與PE線或者以上的組合等方式接入,這些接入方式被稱為防護模式。8.過載故障模式(overetressed fault mode):模式1-在這種情況中,SPD的限壓部分已斷開。限壓功能不再存在,但是線路仍可運行.模式2-在這種情況中.SPD的限壓部分已被SPD內部的一個很小的阻抗短路。線路不可運行,但是設備仍被短路保護.模式3-在這種情況中.SPD的限壓部分網絡側內部開路。線路不運行,但是設備仍然受到開路線的保護。9.浪涌保護器[surge protection device(SPD)]:用于限制暫態過電壓和分流浪涌電流的裝置.它至少應包含一個非線性電壓限制元件.也稱浪涌保護器.10.號浪涌保護器(signal surge protecting device):用于模擬號、數字號、控制號等息網絡通道的防雷裝置。11.保護電容器(capacitor for voltage protection):接于電源線與地之間,用以抑制浪涌電壓的電容器。12.保護系統和裝置(protection system and device):用于防止在有過電流(由于過負載引起),故障電流和接地故障電流的情況下.危及人、畜和損壞設備的系統和裝置。13.電壓開關型浪涌保護器(voltage switching type SPD):在無電涌時呈現高阻抗,當出現電壓浪涌時其突變為極低的阻抗,通常采用放電間隙,氣體放電管,晶閘管和三端雙向可控硅元件作這類SPD的組件。有時稱這類SPD為“短路開關型"SPD.14.多級浪涌保護器(multi-stage SPD):具有不只一個限壓元件的SPD.這些限壓元件可以是被一系列元件在電氣上分離開,也可以不是。這些限壓元件可以是開關型的,也可以是限壓型的。15.限壓型浪涌保護器(voltage-clamping-type SPD):這種浪涌保護器在無浪涌時呈現高阻抗,但隨浪涌電流和電壓的增加其阻抗會不斷減小。用作這類非線性裝置的常見器件有壓敏電阻和鉗位二極管.這類浪涌保護器有時也稱為“鉗位型”。16.組合型浪涌保護器(combination-type SPD):由電壓開關型組件和限壓型組件組合而成,可以顯示為電壓開關型或限壓型或這兩者都有的特性,這決定于所加電壓的特性。17.一端口浪涌保護器(one-port SPD):與保護電路并聯連接的電涌保護器,一個單端口浪涌保護器可以有單獨的輸入輸出端口,但它們之間并無專門的串聯阻抗.18.二端口浪涌保護器(two-port SPD):具有獨立的輸入輸出端口的電涌保護器。在這些端口之間插入有一個專門的串聯阻抗.19.雷電保護系統[lightning protection system(LPS)]:用以對某一空間進行雷電效應防護的整套裝置,它由外部防雷裝置和內部防雷裝置兩部分組成.在特定情況下,雷電保護系統可以僅由外部防雷裝置或內部防雷裝置組成,也稱防雷裝置。20.非線性金屬氧化物電阻片(壓敏電阻) (nonlinear metal oxide varistor) :避雷器的主要工作部件.由于其具有非線性伏安特性,在暫態電壓作用時呈低電阻,從而限制避雷器端子間的電壓,而在正常運行時呈現高電阻。21·過電流保護(over-current protection):電源裝置和所連接的設備為防護過大的輸出電流(包括短路電流)而施加的一種保護。22.過電流保護器(over-current protector) :與保護對象串聯,用來防止其過電流的一種保護器。23.額定電流(rated current):一個限流SPD在不引起限流元件動作特性產生變化的持續流過的大電流。24.額定負載電流(rated load current):可以供給接到SPD輸出端負載的大連續額定均方根或直流電流。25.標稱放電電流(nominal discharge cL rrent) :8/20ms沖擊電流波流過SPD的電流峰值。用于對SPD做II級分類試驗,也用于對SPD做I級和II級分類試驗的預試驗。26.不可恢復的限流(non-resettable current limiting): SPD的只能限流一次的功能。27.可恢復限流(resettable current limiting):SPD在動作后可人為復原的限流功能。28.殘流(residual current):SPD按制造廠家的說明連接,不帶負載,施加大持續工作電壓時流過保護接線端子的電流。29.交流耐受能力(a. c. durability):表征SPD容許通過規定幅值的交流電流.并耐受規定次數的特性。30.連續工作電流(continuous operating current):SPD每一種防護方式在大連續工作電壓作用下分別流過的電流,相當于流過SPD防護器件的電流和流過SPD中與防護器件并聯的所有內部電路的電流之和。31.電流恢復時間(current reset time):一個自恢復限流器恢復到正常和靜止狀態所需要的時間。32.電流響應時間(current response time):在特定的電流和特定的溫度下限流元件動作所要求的時間。33·限流(current limiting):至少包含有一個非線性限流元件的SPD降低所有超過預定電流值的一種功能。34.大放電電流(maximal discharge current):允許通過SPD的電流峰值,該電流具有根據Ⅱ類工作狀態試驗的測試程序所規定的波形(8/20ms)及幅值。35·限流電壓(current-limiting voltage):加在規定輸出端之間,輸出電流開始被限制時的電壓值。36.續流(ollow current):當SPD通過放電電流脈沖后,隨后而至的由電源系統提供的電流,與連續工作電流完全不同.37.自恢復限流(self-resettable current limiting):在干擾電流消失后,SPD能自動恢復限流的功能。38.沖擊耐受能力((impulse durability):表征SPD容許通過規定的波形和峰值的沖擊電流,并耐受規定次數的特性。39.過電壓保護(over-voltage protection):電源裝置和所連接的設備為防止電源故障以至于產生過高的輸出電壓(包括開路電壓)而施加的一種保護。40.殘壓(residual voltage) :在放電電流通過時,在SPD端子間呈現的電壓峰值。41.限壓(voltage limiting): SPD降低所有超過預定電壓值的一種功能。42.持續工作電壓(continuous operating voltage):連續施加在SPD端子間不會引起SPD傳輸特性衰變的直流或交流(有效值)電壓.43.電壓保護水平(voltage protection level):表征一個SPD限制其兩端電壓的特性參數.這個電壓數值不小于浪涌電壓限制的大實測值,是由生產商確定的。44.實測限制電壓(measured limiting voltage):在規定波形和幅值作用下在SPD端子間測量到的電壓大值。45.大持續運行電壓(maximum continuous operating voltage):可連續施加在SPD端子上,且不致引起SPD傳輸性能降低的大電壓(直流或均方根值)。46.大中斷電壓(maximum interrupting voltage):可施加在SPD限流元件上,且不致引起SPD傳輸性能降低的大電壓(直流或有效值)。這個電壓可等于SPD的大持續運行電壓.或根據SPD內部限流元件的配置可高于SPD的大持續運行電壓。47.雙端口浪涌保護器負載側沖擊耐受能力(load-side surge withstand ca-pability for a two-port SPD):雙端口SPD輸出端耐受來自負載側沖擊的能力.48.插入損耗(insertion loss):由于在傳輸系統中插入一個SPD所引起的損耗.它是在SPD插入前后面的系統部分的功率與SPD插入后傳遞到同一部分的功率之比。這個插入損耗通常用分貝表示。49.絕緣電阻(insulation resistance):SPD指定的端子之間施加大持續運行電壓時呈現的電限。50.劣化((degradation):SPD由于浪涌或不利環境引起的原始性能參數的變壞。51.盲點(blind spot):高于大持續運行電壓,但可引起SPD不完全動作的工作點。所謂SPD的不完全動作是指一個多級SPD在沖擊試驗時不是所有各級都能動作。這可造成SPD中的一些元件遭受過載。52.熱崩質(thermal runaway): SPD持續的熱損耗超過了外殼及連線的散熱能力,導致內部元件溫度逐步增加直至損壞,這樣一種狀態又稱為熱失控.53.熱穩定(thermal stability):在工作狀態測試引起溫度升高,在特定環境溫度和大連續工作電壓作用下,SPD溫度隨著時間而下降至穩定溫度,這樣稱SPD是熱穩定的。
一、架空輸電線路雷電過電壓概述
架空輸電線路地處曠野,綿延數千千米,很容易遭受雷擊.雷擊是造成線路跳閘的主要原因.同時,雷擊線路形成的雷電過電壓波.沿線路傳播侵人變電所.也是危害變電所設備運行的重要因素。
根據過電壓形成的物理過程,雷電過電壓可以分為兩種。一是直擊雷過電壓。它是雷電直接擊中桿塔、避雷線或導線(見圖2. 1中①、②或③)引起的線路過電壓。二是感應雷過電壓。它是在雷擊線路附近大地,由于電磁感應在導線上產生的過電壓。運行經驗表明.直擊雷過電壓對電力系統的危害大,感應雷過電壓只對35 kV及其以下的線路有威脅。圖2.1 雷擊輸電線路部位示意圖
按照雷擊線路部位的不同,直擊雷過電壓又分為兩種情況.一種是雷擊線路桿塔或避雷線時,雷電流通過雷擊點阻抗使該點對地電位大大升高.當雷擊點與導線之間的電位差超過線路絕緣的沖擊放電電壓時,會對導線發生閃絡,使導線出現過電壓。因為這時桿塔或避雷線的電位(值)反而高于導線。故通常稱為反擊。另一種是雷電直接擊中導線(無避雷線時)或繞過避雷線(屏蔽失效)擊中導線.直接在導線上引起過電壓。后者通常稱為繞擊。
雷擊線路可能導致兩種破壞性后果。一是使線路發生短路接地故障。雷電過電壓的作用時間雖然很短(數十秒),但導線對地(避雷線或桿塔)發生閃絡以后,工頻電壓將沿此閃絡通道繼續放電,進而發展成為工頻電弧接地。此時繼電保護裝置將會動作,使斷路器跳閘,影響線路正常送電。二是形成沿輸電線路侵人變電站的雷電波,在變電站內產生復雜的折反射過程,可能使電力設備承受很高的過電壓,以致設備絕緣破壞.造成停電事故。
輸電線路防雷性能的優劣,工程上主要用耐雷水平和雷擊跳閘率這兩個指標來衡盆。耐雷水平是指線路遭受雷擊時所能耐受的不致引起絕緣閃絡的大雷電流幅值(單位為kA).耐雷水平越高,線路的防雷性能越好.雷擊跳閘率是指在折算至年雷電日數為40的標準條件下.每百千米線路每年因雷擊引起的線路跳閘次數.單位為:次/百千米·年。需擊跳閘率是衡量線路防雷性能的綜合性指標。二、感應過電壓
在雷云對地放電過程中.放電通道周圍的空間電磁場將發生急劇變化。因而當雷擊輸電線附近的地面時,雖未直擊導線。由于雷電過程引起周圍電磁場的突變,也會在導線上感應出一個高電壓來.這就是感應過電壓。感應過電壓包含靜電感應和電磁感應兩個分量,一般以靜電感應分量為主。
雖然對于感應過電壓形成的物理解釋已經有了一個比較一致的認識,但由于難以得到雷電放電過程的原始數據等原因,感應過電壓有多種不同的計算方法,而且結果還差別較大。
由于感應過電壓對各相導線來說基本相同,所以不會發生相間閃絡。又由于感應過電壓是因電磁感應而產生的,其極性與雷云電荷.即與雷電流的極性正相反,因而絕大部分感應過電壓是正極性的,這一點與直擊雷過電壓不同。另外,感應過電壓的波形較直擊雷過電壓更平緩,波頭由幾秒至幾十秒,波尾則可達數百秒。避雷線由于對導線有屏蔽作用.因而能降低導線上的感應過電壓幅值。避雷線與導線間的藕合系數越大,導線上的感應過電壓就越低。
三、雷擊導線過電壓
無避雷線的線路,當雷閃放電過分靠近線路時,發生的就不是雷擊地面的感應過電壓,而是雷電直擊導線的過電壓。在我國110 kV及其以上線路一般都架
有避雷線.以免導線直接遭受雷擊,但由于各種偶然因素的影響.仍有可能發生避雷線屏蔽失效.雷電繞過避雷線而擊中導線的情況,通常稱繞擊.
繞擊發生的概率雖然很低,但一旦雷電擊中導線,導致線路跳閘的幾率將很高。四、雷擊塔頂過電壓
雷擊塔頂(包括雷擊塔頂附近的避雷線)時,桿塔電感與接地電阻的存在將使塔頂電位瞬時升高,其電位位甚至大大超過導線電位,引起絕緣子串閃絡,即反擊,造成線路跳閘,同時在線路上形成向線路兩側傳播的過電壓波.過電壓波侵人發電廠、變電站。
除上述二種雷電過電壓外,還有一種雷擊避雷線擋距中央時的過電壓.國內外大量的運行經驗表明,此時引起擋距中央避需線與導線空氣問隙發生閃絡是非常罕見的,故對這種雷電過電壓此處不再分析。
應當指出,上面的感應過電壓、雷擊導線過電壓、雷擊塔頂過電壓的計算公式都沒有考慮絕緣子串的運行電壓,亦即導線的運行電壓.對220 kV及其以下的線路來說,運行電壓所占比重不大,一般可以忽略。但在超高壓線路中,隨著電壓等級的提高,工作電壓不應再被忽略,有人建議至少應按照導線運行相電壓峰值的一半來考慮,且電壓極性與雷電流極性相反。因為任何時刻都至少有一相導線運行在與雷電流相反的極性下。如果按照統計法計算,則雷擊時的導線工作電壓瞬時值及其極性應作為一個隨機變來考慮。但這些還都沒有列入電力行業的相關規程中。
五、雷擊跳閘率
當雷閃放電造成線路產生雷電過電壓時,若雷電流超過相應情況下的耐雷水平,則導致線路絕緣發生閃絡。但雷電過電壓的持續時間極短,只有幾十秒、高壓開關還來不及跳閘.只有當沖擊閃絡后的閃絡通道發展成穩定的工頻電弧時才會導致線路跳閘。這些過程都有隨機性。因此工程中除耐雷水平外.還采用雷擊跳閘率作為一個綜合指標,來衡量線路防雷性能的優劣。我國電力行業標準DL/T 620 1997給出了一般上壤電阻率地區有避雷線線路的耐雷水平和雷擊跳閘率數值.見表2.
![]()
表2 架空輸電線路典型桿塔的耐雷水平及雷擊跳閘率
選購浪涌-放心可靠來重慶市梁平區找盾開電氣(重慶市梁平區分公司),我們是廠家直銷,產品型號齊全,確保您購買的每一件產品都符合高標準的質量要求,選擇我們就是選擇品質與服務的雙重保障。聯系人:鄭科-【13336912721】,地址:[浙江省溫州市樂清經濟技術開發區]。